9,910 research outputs found

    100 Horsemen and the Empty City: A Game Theoretic Exploration of Deception in Chinese Military Legend

    Get PDF
    game theory, signaling game, bluffing, deterrence, deception

    Text to 3D Scene Generation with Rich Lexical Grounding

    Full text link
    The ability to map descriptions of scenes to 3D geometric representations has many applications in areas such as art, education, and robotics. However, prior work on the text to 3D scene generation task has used manually specified object categories and language that identifies them. We introduce a dataset of 3D scenes annotated with natural language descriptions and learn from this data how to ground textual descriptions to physical objects. Our method successfully grounds a variety of lexical terms to concrete referents, and we show quantitatively that our method improves 3D scene generation over previous work using purely rule-based methods. We evaluate the fidelity and plausibility of 3D scenes generated with our grounding approach through human judgments. To ease evaluation on this task, we also introduce an automated metric that strongly correlates with human judgments.Comment: 10 pages, 7 figures, 3 tables. To appear in ACL-IJCNLP 201

    Electron fractionalization in two-dimensional graphenelike structures

    Full text link
    Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractionalization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-dimensional systems with time-reversal symmetry. In this letter, we show that fractionally charged topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors of Dirac fermions and time-reversal symmetry is respected. The topological zero-modes are mathematically similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in the mass of the Dirac fermions, akin to cosmic strings in particle physics.Comment: 4 pages, 2 figure

    On robust network coding subgraph construction under uncertainty

    Get PDF
    We consider the problem of network coding subgraph construction in networks where there is uncertainty about link loss rates. For a given set of scenarios specified by an uncertainty set of link loss rates, we provide a robust optimization-based formulation to construct a single subgraph that would work relatively well across all scenarios. We show that this problem is coNP-hard in general for both objectives: minimizing cost of subgraph construction and maximizing throughput given a cost constraint. To solve the problem tractably, we approximate the problem by introducing path constraints, which results in polynomial time-solvable solution in terms of the problem size. The simulation results show that the robust optimization solution is better and more stable than the deterministic solution in terms of worst-case performance. From these results, we compare the tractability of robust network design problems with different uncertain network components and different problem formulations

    Ultrafast processing of pixel detector data with machine learning frameworks

    Full text link
    Modern photon science performed at high repetition rate free-electron laser (FEL) facilities and beyond relies on 2D pixel detectors operating at increasing frequencies (towards 100 kHz at LCLS-II) and producing rapidly increasing amounts of data (towards TB/s). This data must be rapidly stored for offline analysis and summarized in real time. While at LCLS all raw data has been stored, at LCLS-II this would lead to a prohibitive cost; instead, enabling real time processing of pixel detector raw data allows reducing the size and cost of online processing, offline processing and storage by orders of magnitude while preserving full photon information, by taking advantage of the compressibility of sparse data typical for LCLS-II applications. We investigated if recent developments in machine learning are useful in data processing for high speed pixel detectors and found that typical deep learning models and autoencoder architectures failed to yield useful noise reduction while preserving full photon information, presumably because of the very different statistics and feature sets between computer vision and radiation imaging. However, we redesigned in Tensorflow mathematically equivalent versions of the state-of-the-art, "classical" algorithms used at LCLS. The novel Tensorflow models resulted in elegant, compact and hardware agnostic code, gaining 1 to 2 orders of magnitude faster processing on an inexpensive consumer GPU, reducing by 3 orders of magnitude the projected cost of online analysis at LCLS-II. Computer vision a decade ago was dominated by hand-crafted filters; their structure inspired the deep learning revolution resulting in modern deep convolutional networks; similarly, our novel Tensorflow filters provide inspiration for designing future deep learning architectures for ultrafast and efficient processing and classification of pixel detector images at FEL facilities.Comment: 9 pages, 9 figure
    • …
    corecore